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ABSTRACT

Formulas and tables are developed for compressing

the power series representation ofa function to obtain
! minimal order approximating polynomials maintaining
specified accuracy throughout an assigned range of
arguments. Coefficients for polynomials approximat-
ing the function 1-¢¥ are derived and scaled for use in
a fixed point computer.
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1. INTRODUCTION

In certain launch vehicle guidance equations (Ref. 1) there occurs a

function of the form

ulv) =1 = oY

(1)

Values of the argument lie within a range <0.3 <v <2.1. It is required that
any approximation used chall yield u = 0 when v = 0. The accuracy desired
is such that the least significant bit of u should be 2-18,

At present, u(v) is approximated by an eighth order polynomial derived

by truncating the Maclaurin series for the exponential.

8 o
uky) = -3 = (2)
i=1

The approximation (2), however, provides the desired accuracy only when
v < 1. At the upper end of the range of arguments, the significance deteri-
orates to about 2°°.

This report gives the derivation of coefficients for two new approximat-
ing polynomials. One of these is, and the other may be, sufficiently accurate
over the entire pertinent range of arguments. Section II describes a general
method by which a long power series can be compressed to yield the approxi-
mating polynomial of minimum order to maintain specified accuracy throughout
a given range of arguments. In Section III, the method is applied to the function
defined in Equation (1). Section IV introduces considerations of scaling, neces-
sary to retain significance while avoiding overflows in a fixed point computer,
and convenient to enable bit-by=bit simulation of the computer operations for
purposes of checking and error analysis. In Section V, coefficients are evalu-
ated for both seventh and eighth order polynomials to approximate function (1)
over a limited range of arguments. The errors of these approximations are
compared in Section VI with those of the currently used approximation (2). In
Section VII it is shown that the approximating polynomials derived in this report

are preferable to Equation (2) for numerical differentiation of Equation (1).
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II. COMPRESSION OF POWER SERIES

In Reference 2 it is shown that although a function may be expressed by a
convergent infinite power series, there are other expressions more suitable for
approximating the function within specified tolerance for a limited range of the
argument. Of particular importance are the Chebyshev polynomials Ti(x) and
Ti*(x). The former are useful when -1 < x <1, and the latter when 0< x< 1.
Both have the property that, within the range of applicability, their maxima
are +1 and their minima are -1. A series of Chebyshev polynomials converges
more rapidly than any other series representing a function when arguments are

restricted to the appropriate range.

In this report, the polynomials T?(x) are used, with 0 < x< 1. The
normalization of the original independent variable to this range is discussed
in Section III.

T;*(x) = ttijxj (3)

j=0
where
l b
to =2
tgy = -1t [i21) 3 (4)
_ onyiti 52§=1 1 [i+j-1 o s
ty = (=072 T('i-j) (i>j>1] ‘

In Reference 2, the definition of Tg(x) is given special attention. For present
purposes, however, the value of 1/2 is appropriate. Table II-1 lists tij for
0<j<igT.



It is further shown in Reference 2 that any integral power of x can be

expressed as a finite series of Chebyshev polynomials.

n
x" = z"""'”Zhi(n) T(x) (5)
i=0

where
(6)

Table I1-2 lists hi(n) for 0<i< 13 and 7< n< 13,

If m is chosen < n, then substituting (3) into (5) for 0 <i < m - 1 gives

P = z-(zn-l) Egj(m,n)xj + ihi(n) T'i*(x) (7)
J:

i=m

where

Y (8)

gj(m,n) = hi(n) tij
i=j

[0<j<m-1<n]

gj(7,n) and gj(8.n) are listed in Tables I1-3 and II-4 for n < 13.

Equation (7) shows how any power n > m of x can be represented by a
polynomial in x of order m - 1 and a linear combination of T;“(x) with

-4.
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m<i<n. The coefficients gj(m.n) and hi(n) are all integers. It should be

Esj(m.n) + E h,(n) = 220! (9)
)= i=m

1 0_<_x5 1, then the series

observed that

can be expressed as the sum of a polynomial in x, of some order m - 1, and

a residual series of Chebyshev polynomials of order > m.

2 i_ ‘: i z "
cix = dmix + eiTi {x) (10)
i= iz i=m

From (7),
0o m-1 00 ( ) m-1 n
i_ i -(2n- i "
E cx = E c;x + E 2 <. E gi(m,n)x + E hi(n)Ti (x) (11)
i=0 i=0 n=m i=0 i=zm
Equating coefficients of xi and T;‘-‘(x) in (10) and (11) gives
fe o}
-(2n-1 .
d_;=¢+ E 2-(én )cngi(m,n) [0<i<m-1] (12)
n=m



S
i
i

e, = 22'(2n'l)cnhi(n) [m<i<n] (13)

n=i

Equation (13) provides a basis for selecting the order, m - 1, of an approxi-
mating polynomial whose error shall not exceed a specified magnitude when
0< x< 1. Since, in this range, IT;“(x)] < 1, the error of approximation is
limited by

0
lel< E_ = ZZ'(Zn'l)Icnlihi(n) (14)
n=m i=m

By trial and error, a minimal m can be found such that E.. computed by
(14), is sufficiently small. With m thus determined, the coefficients of the

approximating polynomial can be found from (12).

i=m

In practice, the infinite sum in (12) can be replaced by a finite sum. If

the power series

. Qo

i
C.X
Z i

i=0

converges when 0 <x< 1, thea for some r the terms beyond crxr can be

neglected. Equation (10) then becomes

oo m-1 r oo
E c.x' = E d' .x' + e. T*(x) + E c.x' (15)
i mi i%i i
i=0 i= i=m i=r+l
-6~
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The error of approximatiorn is limited, for 0 <x<1, by

r (2ne1) n )
-{2n- R
Emr - 2 :Z Icnl § : i(n) + I"nl
n=m

i=m n=r+

The m coefficients of the approximating polynomial are then

r
_ -(2n-1) . -
d i=c+ z 2 cngi(m,n) [0<i<m-1]
n=m

-7-
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III. APPLICATION TO u(v) = 1 - e

In order to apply the method developed above to the function defined in
equation (1), it is first necessary to transform the variable to one lying in the

range between 0 and 1. If b<v<a+hb, then

_v->b
X = = (18)

Since it is required that the polynomial approximation um(v) vanish when
v = 0, and since it is further desirable that the approximation be most accurate
in the neighborhood of v = 0, the process of Section II is applied to the function

(ax+b) n i
u.(:)=l-(a:c+BT =2(‘(a%'—rf'ﬂ'=2ci"x [0<x<1] (19)
n= 1=

Expanding (ax + b)" by the binomial theorem, it follows that
e j
_a b
= T (20}
j=0

A value of r is easily chosen such that

(o o]

SN

i=r+l

can be neglected for b< v<a+ b, Application of equation (16) leads to a

selection of m which keeps VEmr within tolerance. m is the number of

-13.



coefficients in the approximating polynomial. Then, using (17) to determine

da' .
m

"

m=1 . m-1

1 N
um(v) = ov d;ni(!—i-g) = -vkajvj (21)
i=0 3=

From

i

(v - b} =Z(})(-b)i‘jv‘

j=0
1t follows that
m-1 .
- (-p) S S _3)‘ Do
Ky = (D) z:(j)(ad'mi [0<j<m-1] (22)
=

Note that if b =0, then ¢, = a'/(i + 1)! and k_. = 2 9d'_..
i mj mj

It must be emphasized that the accuracy of approximating u{v) by um(v)

deteriorates very rapidly when v exceeds the range whose limits have been

used in determining the coefficients kmj'

-14-
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IV. COMPUTER SCALING

The polynomials u (v) are to be evaluated in a fractional binary
computer with word length of 23 magnitude bits and a sign bit. A rounded
multiply operation is available.

In programming this computer, it is customary to assign a scale
factor s(N) to a number N such that |N| < 2%, Ina word representing N,
the value of the least significant bit is 23-23‘ Numbers to be added must be

scaled alike., The scale of a product is the sum of the scales of the factors,

In order to realize the advantage of rounded multiplication, there
should be no shifting of intermediate products in a program for polynomial
evaluation., It follows from (21) and the arithmetic of scale factors that

slk ;) = slup) - G+ De(v) (23)
Maximum precision and the avoidance of overflow in intermediate

computations require, in the present application, that

s(v) = 2

sfu_)=5 (24)

s(kmj =3 -2j

The bit configuration in a computer word 'for a number N with a scale
factor s is the same as that for the number 2% ~° N with a scale factor s'.
Instead of computing kmj from (22) and assigning individual scale factcors
from (24), it is preferable to transform the polynomial coefficients to integers
which can all be scaled with 8 = 23. The advantage lies in the greater
convenience with which the computer operations, including round-off, can be

simulated bit by bit for purposes of error analysis and program checking.

-15.
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2042 e
Kppj = 2 Ky S(K ) = 23
_ 518 -
u_=2%. s(U_)=23 ¢
w = Z-Zv, s(w)= 0 |
Then
m-i
U (w)= - wz K_.w
m mj
=0

(25)

(26)

where Um with 8 = 23 is the same configuration of digits as L with 8 = 5,

-16-




V. EVALUATION OF COEFFICIENTS

The range -0.3 <v < 2.1 includes values beyond all those to be
expected in the current application. Therefore, a = 2.4; b= -0.3. With
these parameters, the c, are computed by equation (20) and listed in
Table V-1 for 0 £1 <17,

Accuracy to the order of 2'18 is desired in the approximation to u(v).
Since
o]
-21
2.1y ¢, <2 .
i=14
while
e )
2, lz c; is nearly 2719,
i=13

the value of r = 13 is used for termination of the sums in equations (16) and
(17).

From (16),

2.1 E =754-10"8 < 2-17

7,13 2

2.1 E =78.10"8 <2720

8,13 2

It is evident that m = 8 keeps the error well below the specified tolerance,
while m = 7 may be acceptable if slightly larger errors can be tolerated
when v > 1. The difference between r + 1 = 14 and m = 7 or 8 measures

the benefit gained by the series compression method of Section II in
minimizing the order of an approximating polynomial satisfactory throughout
the range of arguments.

-17-
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Values of d'mi computed by (17), with m =7 and m = 8, are listed

in T‘ble V-Z.

From (25) and (22), witha=2.4, b= -0.3,

ij

m=1 {
- 22042 (g 3] Zz-si(j)

A

[0£jSm-1]

Values of ij computed by (27), with m =7 and m = 8 are listed in

Table V-3.

Table V-1, s from Equation (20) witha = 2.4, b= -0.3

i <

0 .86393 92644
1 . 98496 83497
2 .76789 18791
3 .45365 10976
4 .21551 84202
5 .08557 59883
6 .02917 93574
7 .00871 64991
8 .00231 64848

-18-

10
11
12
13
14
15
16
17

.00055
.00012
. 00002
. 00000
.00000
.00000
. 00000
. 00000

. 00000

44093
06818
40891
44398
07600
01214
00182
00026

00003

(27)



Q) Table V-2. d! . from Equation (17) with r = 13, m =7 and 8

i dai 9%

0 .86393 90612 .86394 22776

1 . 98499 39577 .98467 87486

2 76736 44347 .77240 77891

3 . 45776 39967 .42750 38699

4 .19992 35730 .28638 10778

5 .11713 94957 .00966 48447

6 -.00501 19813 .08720 93573

7 .02634 89539

Table V-3, K__. from Equation (27) with m =7 and 8

m]j

) e R

0 1,048,576 1,048,577
1 2,097,148 2,097, 259
2 2,796,363 2,795,331
3 2,796, 485 2,779,653
4 2,214,973 2,433,572
5 1,645,497 751,671
6 405,518 1,959,997
K 986,971

-19.-
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V. ERROR ANALYSIS

Calculations of the seventh order polynomial Uq. equation (26), were
made with K?‘ from Table V-3. All multiplications were rounded, 1t: sim:la.te
computer operation. The differences between these results and 2"~ (l-e’) are
plotted in Figure VI-1. When -0.3& v < 1, the errors lie virtually within the

shaded region of round-off error, *1/2 - 2'18. When 1 € v< 2.1, the

oscillatory error function never exceeds 2.5 - 2'18 in magnitude.

In contrast, the eighth order truncated Maclaurinseries approximation
departs rapidly from u(v) whenv > 1. The magnitude of its error reaches

2'16when v=1.2, 2'13 when v= 1.5, and 2-10 when v = 1.9,

Errors of the eighth order approximating polynémia.l U8 are wholly

obscured by round-off, and therefore are not shown in Figure VI-1.

The warning is repeated that approximating polynomials derived by
the methods of this report cannot be expected to remain valid outside the

range of arguments for which they are specified.

-21-
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VII. NUMERICAL DIFFERENTIATION

Reference 1 recommends that, since du/dt is used in the application,
u should be approximated by truncation of the exponential series. However,
the polynomials derived in this report improve the approximation to the

derivative as well as the approximation to the function itself.

If an approximation to u(v) is denoted by u*(v) and the error by ¢(v), then

ulv;) = wHv,) + e(v;) (28)
u(vz) - U(Vl) = u*(vz) - u*(vl) + [‘(Vz) - G(Vl)] (29)

In words, if the differentiation is to be approximated by differencing,

then the error of a difference is given by the difference of the errors.

It is evident from Figure VI-1 that in the region l <v < 2.1, the slope
of the error curve for the truncated Maclaurin series is significantly greater
in magnitude than the slope of the error curve for u7(v). Therefore, even
the seventh order polynomial derived here gives a better approximation for

the derivative than does the series truncated to eighth order.

-23.
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